也许更好的阅读体验
引子数列放缩通常被用来求解数列与不等式结合的题。
简单来讲,数列放缩就是 把数列的每一项稍微放大或缩小,从而转化为一个 每一项都比原数列更大或更小的,更容易处理 的数列。
此类题较为困难,常作为高中数学的压轴题出现。但有一部分的题可以无脑用数学归纳法证明,难度较低,我个人认为这类题的分应该拿到。其它的题比较吃积累,如果在平时多积累一些常见的放缩方法,应该可以大大提高考场上想出来的概率。下文会提出辨别方法。
不会数学归纳法没关系,看一道题就会了,非常简单(认真
裂项放缩裂项放缩,即把不好直接求和的数列的每一项放缩成方便裂项的形式,从而得到一个可以裂项求和的数列。直接看例题可能会更明了。
例 1典中典例题:请证明
1 + 1 2 2 + 1 3 2 + ⋯ + 1 n 2 ≤ 5 3 − 2 2 n + 1 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{n^2}\leq\frac5{3}-\frac2{2n+1} 1 + 2 2 1 + 3 2 1 + ⋯ + n 2 1 ≤ 3 5 − 2 n + 1 2
裂项法解析显然不等式左侧的数列不能直接求和,所以考虑放缩。如果我们把它的每一项都放大一点点,再证明放大后数列的和是小于不等式右边的,那原数列的和一定也小于右边。
所以对于它的每一项 1 n 2 \frac1{n^2} n 2 1 ,我们把它的分母缩小一点点,比如减去一个 1 4 \frac14 4 1 变成 1 n 2 − 1 4 \frac1{n^2-\frac14} n 2 − 4 1 1 ,于是就可以得到
1 n 2 < 1 n 2 − 1 4 = 4 ( 2 n + 1 ) ( 2 n − 1 ) = 2 ( 1 2 n − 1 − 1 2 n + 1 ) \frac1{n^2}<\frac1{n^2-\frac14}=\frac{4}{(2n+1)(2n-1)}=2(\frac1{2n-1}-\frac1{2n+1}) n 2 1 < n 2 − 4 1 1 = ( 2 n + 1 ) ( 2 n − 1 ) 4 = 2 ( 2 n − 1 1 − 2 n + 1 1 )
于是就有
1 + 1 2 2 + ⋯ + 1 n 2 ≤ 1 + 2 ( 1 3 − 1 5 + 1 5 − 1 7 ⋯ + 1 2 n − 1 − 1 2 n + 1 ) 1+\frac1{2^2}+\cdots+\frac1{n^2}\leq1+2(\frac13-\frac15+\frac15-\frac17\cdots+\frac1{2n-1}-\frac1{2n+1}) 1 + 2 2 1 + ⋯ + n 2 1 ≤ 1 + 2 ( 3 1 − 5 1 + 5 1 − 7 1 ⋯ + 2 n − 1 1 − 2 n + 1 1 )
把右边化简一下就得到了
1 + 1 2 2 + 1 3 2 + ⋯ + 1 n 2 ≤ 5 3 − 2 2 n + 1 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{n^2}\leq\frac5{3}-\frac2{2n+1} 1 + 2 2 1 + 3 2 1 + ⋯ + n 2 1 ≤ 3 5 − 2 n + 1 2
证毕。
数学归纳法解析数学归纳法是一种比较模式化的证明方法。通常只需要先验证不等式在 n = 1 n=1 n = 1 时成立,然后假设它在 n = k ( k ≥ 1 ) n=k(k\geq 1) n = k ( k ≥ 1 ) 时成立,并以此假设为基础,证明 n = k + 1 n=k+1 n = k + 1 时不等式也成立。这样一来就证明了不等式对于所有正整数都成立(感性理解一下为什么)。
回到此题,n = 1 n=1 n = 1 时,不等式左右都等于 1 1 1 ,不等式成立。
假设 n = k n=k n = k 时不等式成立,即
1 + 1 2 2 + 1 3 2 + ⋯ + 1 k 2 ≤ 5 3 − 2 2 k + 1 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{k^2}\leq\frac5{3}-\frac2{2k+1} 1 + 2 2 1 + 3 2 1 + ⋯ + k 2 1 ≤ 3 5 − 2 k + 1 2
那么当 n = k + 1 n=k+1 n = k + 1 时,
1 + 1 2 2 + 1 3 2 + ⋯ + 1 k 2 + 1 ( k + 1 ) 2 ≤ 5 3 − 2 2 k + 1 + 1 ( k + 1 ) 2 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{k^2}+\frac1{(k+1)^2}\leq\frac5{3}-\frac2{2k+1}+\frac1{(k+1)^2} 1 + 2 2 1 + 3 2 1 + ⋯ + k 2 1 + ( k + 1 ) 2 1 ≤ 3 5 − 2 k + 1 2 + ( k + 1 ) 2 1
上面一步其实就是在不等式两边同时加上一个 1 ( k + 1 ) 2 \frac1{(k+1)^2} ( k + 1 ) 2 1 。
故要证明 n = k + 1 n=k+1 n = k + 1 时不等式成立,只需要证明
5 3 − 2 2 k + 1 + 1 ( k + 1 ) 2 ≤ 5 3 − 2 2 ( k + 1 ) + 1 \frac5{3}-\frac2{2k+1}+\frac1{(k+1)^2}\leq \frac5{3}-\frac2{2(k+1)+1} 3 5 − 2 k + 1 2 + ( k + 1 ) 2 1 ≤ 3 5 − 2 ( k + 1 ) + 1 2
把它化简一下,即证:
4 4 ( k + 1 ) 2 ≤ 4 ( 2 k + 1 ) ( 2 k + 3 ) \frac4{4(k+1)^2}\leq \frac4{(2k+1)(2k+3)} 4 ( k + 1 ) 2 4 ≤ ( 2 k + 1 ) ( 2 k + 3 ) 4
也就是证明:
( 2 k + 2 ) ( 2 k + 2 ) ≥ ( 2 k + 1 ) ( 2 k + 3 ) (2k+2)(2k+2)\geq (2k+1)(2k+3) ( 2 k + 2 ) ( 2 k + 2 ) ≥ ( 2 k + 1 ) ( 2 k + 3 )
再把两边分别拆开后化简,就转化为了证明 4 ≥ 3 4\geq 3 4 ≥ 3 ,显然成立。
故当 n = k + 1 n=k+1 n = k + 1 时不等式成立。
综上所述,
1 + 1 2 2 + 1 3 2 + ⋯ + 1 n 2 ≤ 5 3 − 2 2 n + 1 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{n^2}\leq\frac5{3}-\frac2{2n+1} 1 + 2 2 1 + 3 2 1 + ⋯ + n 2 1 ≤ 3 5 − 2 n + 1 2
可以看到,数学归纳法相对于放缩法,不需要凭空构造任何式子,只需要按照基本的步骤一步一步证就自然出来了。但是它也有局限性,如果右边的式子是一个常数,比如要你证 1 + 1 2 2 + 1 3 2 + ⋯ + 1 n 2 ≤ 5 3 1+\frac1{2^2}+\frac1{3^2}+\cdots+\frac1{n^2}\leq\frac5{3} 1 + 2 2 1 + 3 2 1 + ⋯ + n 2 1 ≤ 3 5 这种式子,就没法用数学归纳法了。所以我的建议是,遇到不等式两边都有 n n n 的,优先用数学归纳法证明,其它情况再尝试放缩法。但是平时练习尽量使用放缩法,不然就没有效果了。
例 2再给一道例题,请证明
1 1 × 3 4 + 1 3 × 5 4 + ⋯ + 1 ( 2 n − 1 ) × ( 2 n + 1 ) 4 > 2 ( n + 1 − 1 ) \frac{1}{\sqrt[4]{1\times 3}}+\frac{1}{\sqrt[4]{3\times 5}}+\cdots+\frac{1}{\sqrt[4]{(2n-1)\times(2n+1)}}>\sqrt2(\sqrt{n+1}-1) 4 1 × 3 1 + 4 3 × 5 1 + ⋯ + 4 ( 2 n − 1 ) × ( 2 n + 1 ) 1 > 2 ( n + 1 − 1 )
裂项法证明1 ( 2 n − 1 ) × ( 2 n + 1 ) 4 = 1 4 n 2 − 1 4 > 1 4 n 2 4 = 1 2 × n = 2 2 n \frac{1}{\sqrt[4]{(2n-1)\times(2n+1)}} =\frac{1}{\sqrt[4]{4n^2-1}} >\frac{1}{\sqrt[4]{4n^2}} =\frac{1}{\sqrt{2}\times\sqrt{n}} =\frac{\sqrt2}{2\sqrt{n}} 4 ( 2 n − 1 ) × ( 2 n + 1 ) 1 = 4 4 n 2 − 1 1 > 4 4 n 2 1 = 2 × n 1 = 2 n 2
因为 2 n < n + n + 1 2\sqrt{n}<\sqrt n+\sqrt{n+1} 2 n < n + n + 1 ,所以有
1 ( 2 n − 1 ) × ( 2 n + 1 ) 4 > 2 2 n > 2 n + n + 1 = 2 ( n + 1 − n ) \frac{1}{\sqrt[4]{(2n-1)\times(2n+1)}} > \frac{\sqrt2}{2\sqrt{n}} >\frac{\sqrt2}{\sqrt{n}+\sqrt{n+1}} =\sqrt{2}(\sqrt{n+1}-\sqrt{n}) 4 ( 2 n − 1 ) × ( 2 n + 1 ) 1 > 2 n 2 > n + n + 1 2 = 2 ( n + 1 − n )
因此
1 1 × 3 4 + 1 3 × 5 4 + ⋯ + 1 ( 2 n − 1 ) × ( 2 n + 1 ) 4 > 2 ( n + 1 − 1 ) \frac{1}{\sqrt[4]{1\times 3}}+\frac{1}{\sqrt[4]{3\times 5}}+\cdots+\frac{1}{\sqrt[4]{(2n-1)\times(2n+1)}}>\sqrt2(\sqrt{n+1}-1) 4 1 × 3 1 + 4 3 × 5 1 + ⋯ + 4 ( 2 n − 1 ) × ( 2 n + 1 ) 1 > 2 ( n + 1 − 1 )
归纳法证明当 n = 1 n=1 n = 1 时,不等式显然成立。
假设 n = k n=k n = k 时不等式成立,即
1 1 × 3 4 + 1 3 × 5 4 + ⋯ + 1 ( 2 k − 1 ) × ( 2 k + 1 ) 4 > 2 ( k + 1 − 1 ) \frac{1}{\sqrt[4]{1\times 3}}+\frac{1}{\sqrt[4]{3\times 5}}+\cdots+\frac{1}{\sqrt[4]{(2k-1)\times(2k+1)}}>\sqrt2(\sqrt{k+1}-1) 4 1 × 3 1 + 4 3 × 5 1 + ⋯ + 4 ( 2 k − 1 ) × ( 2 k + 1 ) 1 > 2 ( k + 1 − 1 )
那么当 n = k + 1 n=k+1 n = k + 1 时,有
1 1 × 3 4 + ⋯ + 1 ( 2 k − 1 ) × ( 2 k + 1 ) 4 + 1 ( 2 k + 1 ) × ( 2 k + 3 ) 4 > 2 ( k + 1 − 1 ) + 1 ( 2 k + 1 ) × ( 2 k + 3 ) 4 \frac{1}{\sqrt[4]{1\times 3}}+\cdots+\frac{1}{\sqrt[4]{(2k-1)\times(2k+1)}}+\frac{1}{\sqrt[4]{(2k+1)\times(2k+3)}}>\sqrt2(\sqrt{k+1}-1)+\frac{1}{\sqrt[4]{(2k+1)\times(2k+3)}} 4 1 × 3 1 + ⋯ + 4 ( 2 k − 1 ) × ( 2 k + 1 ) 1 + 4 ( 2 k + 1 ) × ( 2 k + 3 ) 1 > 2 ( k + 1 − 1 ) + 4 ( 2 k + 1 ) × ( 2 k + 3 ) 1
要证不等式在 n = k + 1 n=k+1 n = k + 1 时成立,只需证
2 ( k + 1 − 1 ) + 1 ( 2 k + 1 ) × ( 2 k + 3 ) 4 > 2 ( k + 2 − 1 ) \sqrt2(\sqrt{k+1}-1)+\frac{1}{\sqrt[4]{(2k+1)\times(2k+3)}}>\sqrt2(\sqrt{k+2}-1) 2 ( k + 1 − 1 ) + 4 ( 2 k + 1 ) × ( 2 k + 3 ) 1 > 2 ( k + 2 − 1 )
即证
1 ( 2 k + 1 ) × ( 2 k + 3 ) 4 > 2 ( k + 2 − k + 1 ) \frac{1}{\sqrt[4]{(2k+1)\times(2k+3)}}>\sqrt{2}(\sqrt{k+2}-\sqrt{k+1}) 4 ( 2 k + 1 ) × ( 2 k + 3 ) 1 > 2 ( k + 2 − k + 1 )
也就是证
( 2 k + 1 ) × ( 2 k + 3 ) 4 < 1 2 ( k + 2 + k + 1 ) \sqrt[4]{(2k+1)\times(2k+3)}<\frac1{\sqrt2}(\sqrt{k+2}+\sqrt{k+1}) 4 ( 2 k + 1 ) × ( 2 k + 3 ) < 2 1 ( k + 2 + k + 1 )
把右半边套一下均值不等式,可以得到
1 2 ( k + 2 + k + 1 ) ≥ ( 2 k + 4 ) × ( 2 k + 2 ) 4 \frac1{\sqrt2}(\sqrt{k+2}+\sqrt{k+1})\geq \sqrt[4]{(2k+4)\times(2k+2)} 2 1 ( k + 2 + k + 1 ) ≥ 4 ( 2 k + 4 ) × ( 2 k + 2 )
显然 ( 2 k + 4 ) × ( 2 k + 2 ) 4 > ( 2 k + 1 ) × ( 2 k + 3 ) 4 \sqrt[4]{(2k+4)\times(2k+2)}>\sqrt[4]{(2k+1)\times(2k+3)} 4 ( 2 k + 4 ) × ( 2 k + 2 ) > 4 ( 2 k + 1 ) × ( 2 k + 3 ) ,于是证明了 ( 2 k + 1 ) × ( 2 k + 3 ) 4 < 1 2 ( k + 2 + k + 1 ) \sqrt[4]{(2k+1)\times(2k+3)}<\frac1{\sqrt2}(\sqrt{k+2}+\sqrt{k+1}) 4 ( 2 k + 1 ) × ( 2 k + 3 ) < 2 1 ( k + 2 + k + 1 ) 。
所以当 n = k + 1 n=k+1 n = k + 1 时,不等式成立。
证毕。
练习 1求证:1 + 1 3 2 + 1 5 2 + ⋯ + 1 ( 2 n − 1 ) 2 > 7 6 − 1 2 ( 2 n − 1 ) ( n ≥ 2 ) 1+{\frac{1}{3^{2}}}+{\frac{1}{5^{2}}}+\cdots+{\frac{1}{\left(2n-1\right)^{2}}}>{\frac{7}{6}}-{\frac{1}{2\left(2n-1\right)}}(n\geq2) 1 + 3 2 1 + 5 2 1 + ⋯ + ( 2 n − 1 ) 2 1 > 6 7 − 2 ( 2 n − 1 ) 1 ( n ≥ 2 ) 求证:2 ( n + 1 − 1 ) < 1 + 1 2 + 1 3 + ⋯ + 1 n < 2 ( 2 n + 1 − 1 ) 2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<\sqrt{2}(\sqrt{2n+1}-1) 2 ( n + 1 − 1 ) < 1 + 2 1 + 3 1 + ⋯ + n 1 < 2 ( 2 n + 1 − 1 ) 已知 n , m ∈ N + , x > − 1 , S m = 1 m + 2 m + 3 m + ⋯ + n m n,m\in\mathbb{N}_+,x>-1,S_m=1^m+2^m+3^m+\cdots+n^m n , m ∈ N + , x > − 1 , S m = 1 m + 2 m + 3 m + ⋯ + n m ,求证 n m + 1 < ( m + 1 ) S m < ( n + 1 ) m + 1 − 1 n^{m+1}<(m+1)S_m<(n+1)^{m+1}-1 n m + 1 < ( m + 1 ) S m < ( n + 1 ) m + 1 − 1 已知 a n = 4 n − 2 n , T n = 2 n a 1 + a 2 + ⋯ + a n a_n=4^n-2^n,T_n=\frac{2^n}{a_1+a_2+\cdots+a_n} a n = 4 n − 2 n , T n = a 1 + a 2 + ⋯ + a n 2 n ,求证:T 1 + T 2 + T 3 + ⋯ + T n < 3 2 T_1+T_2+T_3+\cdots+T_n<\frac{3}{2} T 1 + T 2 + T 3 + ⋯ + T n < 2 3 不是我故意不给答案,是我真的懒得打了(
我记得前三题都可以用归纳法证明。
分式放缩分式放缩主要利用 b a > b + m a + m ( b > a > 0 , m > 0 ) \frac ba>\frac{b+m}{a+m}(b>a>0,m>0) a b > a + m b + m ( b > a > 0 , m > 0 ) ,b a < b + m a + m ( a > b > 0 , m > 0 ) \frac ba<\frac{b+m}{a+m}(a>b>0,m>0) a b < a + m b + m ( a > b > 0 , m > 0 ) 两个不等式。
例 3又一个典中典例题,证明:
2 ⋅ 4 ⋅ 6 ⋯ 2 n 1 ⋅ 3 ⋅ 5 ⋯ ⋅ ( 2 n − 1 ) > 2 n + 1 \frac{2\cdot4\cdot6\cdots2n}{1\cdot3\cdot5\cdots\cdot(2n-1)}>\sqrt{2n+1} 1 ⋅ 3 ⋅ 5 ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋯ 2 n > 2 n + 1
证明利用 b a > b + m a ( b > a > 0 , m > 0 ) \frac ba>\frac{b+m}a(b>a>0,m>0) a b > a b + m ( b > a > 0 , m > 0 ) 可得:
2 1 ⋅ 4 3 ⋅ 6 5 ⋯ 2 n 2 n − 1 > 3 2 ⋅ 5 4 ⋅ 7 6 ⋯ 2 n + 1 2 n = 1 2 ⋅ 3 4 ⋅ 5 6 ⋯ 2 n − 1 2 n ⋅ ( 2 n + 1 ) \frac{2}{1}\cdot\frac{4}{3}\cdot\frac{6}{5}\cdots\frac{2n}{2n-1} >\frac{3}{2}\cdot\frac{5}{4}\cdot\frac{7}{6}\cdots\frac{2n+1}{2n} =\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n}\cdot(2n+1) 1 2 ⋅ 3 4 ⋅ 5 6 ⋯ 2 n − 1 2 n > 2 3 ⋅ 4 5 ⋅ 6 7 ⋯ 2 n 2 n + 1 = 2 1 ⋅ 4 3 ⋅ 6 5 ⋯ 2 n 2 n − 1 ⋅ ( 2 n + 1 )
因此有:
( 2 1 ⋅ 4 3 ⋅ 6 5 ⋯ 2 n 2 n − 1 ) 2 > ( 2 1 ⋅ 4 3 ⋅ 6 5 ⋯ 2 n 2 n − 1 ) × [ 1 2 ⋅ 3 4 ⋅ 5 6 ⋯ 2 n − 1 2 n ⋅ ( 2 n + 1 ) ] = 2 n + 1 (\frac{2}{1}\cdot\frac{4}{3}\cdot\frac{6}{5}\cdots\frac{2n}{2n-1})^2 >(\frac{2}{1}\cdot\frac{4}{3}\cdot\frac{6}{5}\cdots\frac{2n}{2n-1})\times \bigg[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n}\cdot(2n+1) \bigg] =2n+1 ( 1 2 ⋅ 3 4 ⋅ 5 6 ⋯ 2 n − 1 2 n ) 2 > ( 1 2 ⋅ 3 4 ⋅ 5 6 ⋯ 2 n − 1 2 n ) × [ 2 1 ⋅ 4 3 ⋅ 6 5 ⋯ 2 n 2 n − 1 ⋅ ( 2 n + 1 ) ] = 2 n + 1
两边一起开个方,就得到了
2 ⋅ 4 ⋅ 6 ⋯ 2 n 1 ⋅ 3 ⋅ 5 ⋯ ⋅ ( 2 n − 1 ) > 2 n + 1 \frac{2\cdot4\cdot6\cdots2n}{1\cdot3\cdot5\cdots\cdot(2n-1)}>\sqrt{2n+1} 1 ⋅ 3 ⋅ 5 ⋯ ⋅ ( 2 n − 1 ) 2 ⋅ 4 ⋅ 6 ⋯ 2 n > 2 n + 1
这道题同样可以用归纳法证明,这里就不再赘述了。
例 4证明:
( 1 + 1 ) ( 1 + 1 4 ) ( 1 + 1 7 ) ⋯ ( 1 + 1 3 n − 2 ) > 3 n + 1 3 (1+1)(1+\frac{1}{4})(1+\frac{1}{7})\cdots(1+\frac{1}{3n-2})>\sqrt[3]{3n+1} ( 1 + 1 ) ( 1 + 4 1 ) ( 1 + 7 1 ) ⋯ ( 1 + 3 n − 2 1 ) > 3 3 n + 1
证明运用两次次分式放缩。
因为 1 + 1 3 n − 2 > 1 + 1 3 n − 1 > 1 + 1 3 n 1+\frac1{3n-2}>1+\frac1{3n-1}>1+\frac1{3n} 1 + 3 n − 2 1 > 1 + 3 n − 1 1 > 1 + 3 n 1 ,故 3 n − 1 3 n − 2 > 3 n 3 n − 1 > 3 n + 1 3 n \frac{3n-1}{3n-2}>\frac{3n}{3n-1}>\frac{3n+1}{3n} 3 n − 2 3 n − 1 > 3 n − 1 3 n > 3 n 3 n + 1 。所以有:
2 1 ⋅ 5 4 ⋅ 8 7 ⋯ ⋯ 3 n − 1 3 n − 2 > 3 2 . 6 5 ⋅ 9 8 ⋯ ⋯ 3 n 3 n − 1 2 1 ⋅ 5 4 ⋅ 8 7 ⋯ ⋯ 3 n − 1 3 n − 2 > 4 3 ⋅ 7 6 ⋅ 10 9 ⋯ ⋯ 3 n + 1 3 n \begin{aligned} \frac21\cdot\frac54\cdot\frac87\cdots\cdots\frac{3n-1}{3n-2}&>\frac32.\frac65\cdot\frac98\cdots\cdots\frac{3n}{3n-1}\\ \frac{2}{1}\cdot\frac{5}{4}\cdot\frac{8}{7}\cdots\cdots\frac{3n-1}{3n-2}&>\frac{4}{3}\cdot\frac{7}{6}\cdot\frac{10}{9}\cdots\cdots\frac{3n+1}{3n} \end{aligned} 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ ⋯ 3 n − 2 3 n − 1 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ ⋯ 3 n − 2 3 n − 1 > 2 3 . 5 6 ⋅ 8 9 ⋯ ⋯ 3 n − 1 3 n > 3 4 ⋅ 6 7 ⋅ 9 1 0 ⋯ ⋯ 3 n 3 n + 1
两式相乘,得
( 2 1 ⋅ 5 4 ⋅ 8 7 ⋯ ⋯ 3 n − 1 3 n − 2 ) 2 > 4 2 ⋅ 7 5 ⋅ 10 8 ⋯ ⋯ 3 n + 1 3 n − 1 = 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ 3 n − 2 3 n − 1 ⋅ ( 3 n + 1 ) \left(\dfrac{2}{1}\cdot\dfrac{5}{4}\cdot\dfrac{8}{7}\cdots\cdots\dfrac{3n-1}{3n-2}\right)^2>\dfrac{4}{2}\cdot\dfrac{7}{5}\cdot\dfrac{10}{8}\cdots\cdots\dfrac{3n+1}{3n-1}=\dfrac{1}{2}\cdot\dfrac{4}{5}\cdot\dfrac{7}{8}\cdots\dfrac{3n-2}{3n-1}\cdot\left(3n+1\right) ( 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ ⋯ 3 n − 2 3 n − 1 ) 2 > 2 4 ⋅ 5 7 ⋅ 8 1 0 ⋯ ⋯ 3 n − 1 3 n + 1 = 2 1 ⋅ 5 4 ⋅ 8 7 ⋯ 3 n − 1 3 n − 2 ⋅ ( 3 n + 1 )
故
( 2 1 ⋅ 5 4 ⋅ 8 7 ⋯ ⋅ 3 n − 1 3 n − 2 ) 3 > 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ ⋅ 3 n − 2 3 n − 1 ⋅ ( 2 1 ⋅ 5 4 ⋅ 8 7 ⋯ ⋯ 3 n − 1 3 n − 2 ) ( 3 n + 1 ) \left(\frac{2}{1}\cdot\frac{5}{4}\cdot\frac{8}{7}\cdots\cdot\frac{3n-1}{3n-2}\right)^{3}>\frac{1}{2}\cdot\frac{4}{5}\cdot\frac{7}{8}\cdots\cdot\frac{3n-2}{3n-1}\cdot\left(\frac{2}{1}\cdot\frac{5}{4}\cdot\frac{8}{7}\cdots\cdots\frac{3n-1}{3n-2}\right)(3n+1) ( 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ ⋅ 3 n − 2 3 n − 1 ) 3 > 2 1 ⋅ 5 4 ⋅ 8 7 ⋯ ⋅ 3 n − 1 3 n − 2 ⋅ ( 1 2 ⋅ 4 5 ⋅ 7 8 ⋯ ⋯ 3 n − 2 3 n − 1 ) ( 3 n + 1 )
即
( 2 1 ⋅ 5 4 ⋅ 8 7 ⋅ ⋅ ⋅ ⋅ 3 n − 1 3 n − 2 ) 3 > ( 3 n + 1 ) \left(\frac{2}{1}\cdotp\frac{5}{4}\cdotp\frac{8}{7}\cdotp\cdotp\cdotp\cdotp\frac{3n-1}{3n-2}\right)^3>(3n+1) ( 1 2 ⋅ 4 5 ⋅ 7 8 ⋅ ⋅ ⋅ ⋅ 3 n − 2 3 n − 1 ) 3 > ( 3 n + 1 )
就证明了
( 1 + 1 ) ( 1 + 1 4 ) ( 1 + 1 7 ) ⋯ ( 1 + 1 3 n − 2 ) > 3 n + 1 3 (1+1)(1+\frac{1}{4})(1+\frac{1}{7})\cdots(1+\frac{1}{3n-2})>\sqrt[3]{3n+1} ( 1 + 1 ) ( 1 + 4 1 ) ( 1 + 7 1 ) ⋯ ( 1 + 3 n − 2 1 ) > 3 3 n + 1
你没猜错,还是可以用归纳法证明。
分类放缩也有叫并项放缩的。
例 5证明
1 + 1 2 + 1 3 + ⋯ + 1 2 n − 1 > n 2 1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}-1}>\frac{n}{2} 1 + 2 1 + 3 1 + ⋯ + 2 n − 1 1 > 2 n
证明当 n ≥ 2 n\geq 2 n ≥ 2 时,有
1 2 n − 1 + 1 + 1 2 n − 1 + 2 + ⋯ + 1 2 n − 1 + 2 n − 1 > 1 2 n + 1 2 n + ⋯ + 1 2 n = 1 2 n × 2 n − 1 = 1 2 \frac1{2^{n-1}+1}+\frac1{2^{n-1}+2}+\cdots+\frac1{2^{n-1}+2^{n-1}}>\frac1{2^n}+\frac1{2^n}+\cdots+\frac1{2^n}=\frac1{2^n}\times2^{n-1}=\frac12 2 n − 1 + 1 1 + 2 n − 1 + 2 1 + ⋯ + 2 n − 1 + 2 n − 1 1 > 2 n 1 + 2 n 1 + ⋯ + 2 n 1 = 2 n 1 × 2 n − 1 = 2 1
故
1 + 1 2 + 1 3 + ⋯ + 1 2 n − 1 > 1 + 1 2 + ( 1 4 + 1 4 ) + ( 1 2 3 + 1 2 3 + 1 2 3 + 1 2 3 ) + ⋯ + ( 1 2 n + 1 2 n + ⋯ + 1 2 n ) − 1 2 n = n 2 + ( 1 − 1 2 n ) > n 2 \begin{aligned} &1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{n}-1}\\ >&1+\frac{1}{2}+(\frac{1}{4}+\frac{1}{4})+(\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}}+\frac{1}{2^{3}})+\cdots+(\frac{1}{2^n}+\frac{1}{2^n}+\cdots+\frac{1}{2^n})-\frac{1}{2^n}\\ =&\frac{n}{2}+(1-\frac{1}{2^n})>\frac{n}{2} \end{aligned} > = 1 + 2 1 + 3 1 + ⋯ + 2 n − 1 1 1 + 2 1 + ( 4 1 + 4 1 ) + ( 2 3 1 + 2 3 1 + 2 3 1 + 2 3 1 ) + ⋯ + ( 2 n 1 + 2 n 1 + ⋯ + 2 n 1 ) − 2 n 1 2 n + ( 1 − 2 n 1 ) > 2 n
归仍可。
等比放缩即把原数列放缩为一个等比数列。这是我瞎取的名字。
这类题型我校月考已经考过了,所以我只会列出关键步骤(懒
例 6A n − k > B ⋅ A m A_n-k>B\cdot A^m A n − k > B ⋅ A m 型。
已知 a n = 2 n − 1 a_n=2^n-1 a n = 2 n − 1 ,证明 n 2 − 1 2 < a 1 a 2 + a 2 a 3 + … + a n a n + 1 \frac n2-\frac12<\frac{a_1}{a_2}+\frac{a_2}{a_3}+\ldots+\frac{a_n}{a_{n+1}} 2 n − 2 1 < a 2 a 1 + a 3 a 2 + … + a n + 1 a n
提示a n a n + 1 = 2 n − 1 2 n + 1 − 1 = 1 2 − 1 2 n + 2 − 2 \frac{a_n}{a_{n+1}}=\frac{2^n-1}{2^{n+1}-1}=\frac12-\frac1{2^{n+2}-2} a n + 1 a n = 2 n + 1 − 1 2 n − 1 = 2 1 − 2 n + 2 − 2 1
因为,
2 n + 2 − 2 > 3 × 2 n ( n ≥ 1 ) 2^{n+2}-2>3\times2^n\left(n\geq1\right) 2 n + 2 − 2 > 3 × 2 n ( n ≥ 1 )
于是有
1 2 − 1 2 n + 2 − 2 > 1 2 − 1 3 ⋅ 1 2 n \frac12-\frac1{2^{n+2}-2}>\frac12-\frac13\cdot\frac1{2^n} 2 1 − 2 n + 2 − 2 1 > 2 1 − 3 1 ⋅ 2 n 1
例 7A n − B n − 1 > λ ⋅ A n − 1 A^n-B^{n-1}>\lambda \cdot A^{n-1} A n − B n − 1 > λ ⋅ A n − 1 型。
已知 a n = 4 n − 3 n − 1 , S n = 1 a 1 + 1 a 2 + … + 1 a n a_n=4^n-3^{n-1},S_n=\frac{1}{a_1}+\frac{1}{a_2}+\ldots+\frac{1}{a_n} a n = 4 n − 3 n − 1 , S n = a 1 1 + a 2 1 + … + a n 1 ,证明 1 3 ≤ S n ≤ 4 9 \frac{1}{3}\leq S_n\leq\frac{4}{9} 3 1 ≤ S n ≤ 9 4
提示因为
4 n − 3 n − 1 > 3 × 4 n − 1 ( n ≥ 1 ) 4^n-3^{n-1}>3\times4^{n-1}\left(n\geq1\right) 4 n − 3 n − 1 > 3 × 4 n − 1 ( n ≥ 1 )
于是有
1 4 n − 3 n − 1 < 1 3 ⋅ 1 4 n − 1 \frac1{4^n-3^{n-1}}<\frac13\cdot\frac1{4^{n-1}} 4 n − 3 n − 1 1 < 3 1 ⋅ 4 n − 1 1
二项式相关因为学校的进度还没到二项式定理,所以就先只放这一道题了。
例 8求证
( 1 + 1 n ) n < 1 + 1 + 1 1 × 2 + 1 2 × 3 + ⋯ + 1 ( n − 1 ) n < 3 \left(1+\frac1n\right)^n<1+1+\frac1{1\times 2}+\frac1{2\times 3}+\cdots+\frac1{(n-1)n}<3 ( 1 + n 1 ) n < 1 + 1 + 1 × 2 1 + 2 × 3 1 + ⋯ + ( n − 1 ) n 1 < 3
证明( 1 + 1 n ) n = 1 + ( n 1 ) ⋅ 1 n + ( n 2 ) ⋅ ( 1 n ) 2 + ⋯ + ( n n ) ⋅ ( 1 n ) n = 1 + n 1 ! ⋅ 1 n + n ( n − 1 ) 2 ! ⋅ 1 n 2 + ⋯ + n ( n − 1 ) ( n − 2 ) ⋯ 1 n ! ⋅ 1 n n = 1 + 1 + 1 2 ! ( 1 − 1 n ) + ⋯ + 1 n ! ( 1 − 1 n ) ( 1 − 2 n ) ⋯ ( 1 − n − 1 n ) < 1 + 1 + 1 2 ! + 1 3 ! + ⋯ + 1 n ! ≤ 1 + 1 + 1 1 × 2 + 1 2 × 3 + ⋯ + 1 ( n − 1 ) n < 1 + 1 + 1 − 1 2 + 1 2 − 1 3 + ⋯ + 1 n − 1 − 1 n = 3 ⋅ 1 n − 1 ≤ 3 \begin{aligned}\left(1+\frac1n\right)^n&=1+\tbinom{n}{1}\cdot\frac1n+\tbinom{n}{2}\cdot(\frac{1}{n})^2+\cdots+\tbinom{n}{n}\cdot\left(\frac1n\right)^n\\\\ &=1+\frac n{1!}\cdot\frac1n+\frac{n(n-1)}{2!}\cdot\frac1{n^2}+\cdots+\frac{n(n-1)(n-2)\cdots1}{n!}\cdot\frac1{n^n}\\\\ &=1+1+\frac1{2!}\left(1-\frac1n\right)+\cdots+\frac1{n!}\left(1-\frac1n\right)\left(1-\frac2n\right)\cdots\left(1-\frac{n-1}n\right)\\\\ &<1+1+\frac1{2!}+\frac1{3!}+\cdots+\frac1{n!}\\\\ &\leq1+1+\frac1{1\times 2}+\frac1{2\times 3}+\cdots+\frac1{(n-1)n}\\\\ &<1+1+1-\frac12+\frac12-\frac13+\cdots+\frac1{n-1}-\frac1n=3\cdot\frac1{n-1}\leq3 \end{aligned} ( 1 + n 1 ) n = 1 + ( 1 n ) ⋅ n 1 + ( 2 n ) ⋅ ( n 1 ) 2 + ⋯ + ( n n ) ⋅ ( n 1 ) n = 1 + 1 ! n ⋅ n 1 + 2 ! n ( n − 1 ) ⋅ n 2 1 + ⋯ + n ! n ( n − 1 ) ( n − 2 ) ⋯ 1 ⋅ n n 1 = 1 + 1 + 2 ! 1 ( 1 − n 1 ) + ⋯ + n ! 1 ( 1 − n 1 ) ( 1 − n 2 ) ⋯ ( 1 − n n − 1 ) < 1 + 1 + 2 ! 1 + 3 ! 1 + ⋯ + n ! 1 ≤ 1 + 1 + 1 × 2 1 + 2 × 3 1 + ⋯ + ( n − 1 ) n 1 < 1 + 1 + 1 − 2 1 + 2 1 − 3 1 + ⋯ + n − 1 1 − n 1 = 3 ⋅ n − 1 1 ≤ 3
常见放缩技巧这里总结了一部分放缩技巧。
( 1 ) 2 n − 1 2 n < 2 n 2 n + 1 , 2 n 2 n − 1 > 2 n + 1 2 n , 1 2 n + 1 < 1 2 n ( 2 ) 1 n 3 < 1 n ( n 2 − 1 ) = 1 2 [ 1 n ( n − 1 ) − 1 n ( n + 1 ) ] ( 3 ) 1 n − 1 n + 1 = 1 n ( n + 1 ) < 1 n 2 < 1 n ( n − 1 ) = 1 n − 1 − 1 n ( n ≥ 2 ) ( 4 ) 1 n 2 < 1 n 2 − 1 = 1 2 ( 1 n − 1 − 1 n + 1 ) ( n ≥ 2 ) ( 5 ) 1 n 2 = 4 4 n 2 < 4 4 n 2 − 1 = 2 ( 1 2 n − 1 − 1 2 n + 1 ) ( 6 ) 2 ( n + 1 − n ) = 2 n + 1 + n < 1 n = 2 2 n < 2 n + n − 1 = 2 ( n − n − 1 ) ( 7 ) 1 n + 1 + 1 n + 2 + . . . + 1 2 n ≥ 1 2 n + 1 2 n + . . . + 1 2 n = n 2 n = 1 2 ( 8 ) n ( n + 1 ) < n + n + 1 2 = n + 1 2 ( 9 ) n n + 2 = n n + 1 ⋅ n + 1 n + 2 < n n + 1 + n + 1 n + 2 2 ( 10 ) i 2 + 1 − j 2 + 1 i − j = i 2 − j 2 ( i − j ) ( i 2 + 1 + j 2 + 1 ) = i + j i 2 + 1 + j 2 + 1 < 1 \begin{aligned} (1)\space&\frac{2n-1}{2n}<\frac{2n}{2n+1},\:\frac{2n}{2n-1}>\frac{2n+1}{2n},\:\frac{1}{2^n+1}<\frac{1}{2^n}\\ (2)\space&\frac{1}{n^3}<\frac{1}{n(n^2-1)}=\frac{1}{2}\bigg[\frac{1}{n(n-1)}-\frac{1}{n(n+1)}\bigg]\\ (3)\space&\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}<\frac{1}{n^{2}}<\frac{1}{n\left(n-1\right)}=\frac{1}{n-1}-\frac{1}{n}~(n\ge2)\\ (4)\space&\frac{1}{n^2}<\frac{1}{n^2-1}=\frac{1}{2}\:(\frac{1}{n-1}-\frac{1}{n+1})\space(n\geq 2)\\ (5)\space&\frac{1}{n^2}=\frac{4}{4n^2}<\frac{4}{4n^2-1}=2\:(\frac{1}{2n-1}-\frac{1}{2n+1})\\ (6)\space&2(\sqrt{n+1}-\sqrt{n})\:=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{1}{\sqrt{n}}=\frac{2}{2\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n-1}}=2\:(\sqrt{n}-\sqrt{n-1})\\ (7)\space&\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}=\frac{n}{2n}=\frac12\\ (8)\space&\sqrt{n(n+1)}<\frac{n+n+1}2=n+\frac12\\ (9)\space&\sqrt{\frac n{n+2}}=\sqrt{\frac n{n+1}\cdot\frac{n+1}{n+2}}<\frac{\frac n{n+1}+\frac{n+1}{n+2}}2\\ (10)\space&\frac{\sqrt{i^2+1}-\sqrt{j^2+1}}{i-j}=\frac{i^2-j^2}{(i-j)(\sqrt{i^2+1}+\sqrt{j^2+1})}=\frac{i+j}{\sqrt{i^2+1}+\sqrt{j^2+1}}<1 \end{aligned} ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) ( 9 ) ( 1 0 ) 2 n 2 n − 1 < 2 n + 1 2 n , 2 n − 1 2 n > 2 n 2 n + 1 , 2 n + 1 1 < 2 n 1 n 3 1 < n ( n 2 − 1 ) 1 = 2 1 [ n ( n − 1 ) 1 − n ( n + 1 ) 1 ] n 1 − n + 1 1 = n ( n + 1 ) 1 < n 2 1 < n ( n − 1 ) 1 = n − 1 1 − n 1 ( n ≥ 2 ) n 2 1 < n 2 − 1 1 = 2 1 ( n − 1 1 − n + 1 1 ) ( n ≥ 2 ) n 2 1 = 4 n 2 4 < 4 n 2 − 1 4 = 2 ( 2 n − 1 1 − 2 n + 1 1 ) 2 ( n + 1 − n ) = n + 1 + n 2 < n 1 = 2 n 2 < n + n − 1 2 = 2 ( n − n − 1 ) n + 1 1 + n + 2 1 + . . . + 2 n 1 ≥ 2 n 1 + 2 n 1 + . . . + 2 n 1 = 2 n n = 2 1 n ( n + 1 ) < 2 n + n + 1 = n + 2 1 n + 2 n = n + 1 n ⋅ n + 2 n + 1 < 2 n + 1 n + n + 2 n + 1 i − j i 2 + 1 − j 2 + 1 = ( i − j ) ( i 2 + 1 + j 2 + 1 ) i 2 − j 2 = i 2 + 1 + j 2 + 1 i + j < 1