Calculus Note

This note is for my reference only.

Number Set

Bounded set

To prove β\beta is the supremum of EE, we could show that for any ϵ>0\epsilon > 0, βϵ\beta - \epsilon is not the upper bound of EE. that is, find a element of EE that is greater or equal to βϵ\beta - \epsilon.

The extended real number system

R=R {,}\overline{\R} = \R \ \cup \{-\infin, \infin\}.

Complex number

z+w=z+wzw=zwzw=zwz+wz+wz=zz12(1+ab)2=(1+ab)(1+ab)\overline{z + w} = \overline{z} + \overline{w}\\ \overline{z\cdot w} = \overline{z} \cdot \overline{w}\\ \mid zw\mid = \mid z\mid \cdot \mid w \mid \\ \mid z + w \mid \leq \mid z\mid + \mid w \mid \\ \mid z \mid = \mid z\overline z\mid^{\frac{1}{2}} \Rightarrow (1+a\overline b)^2 = (1+a\overline b)(1+\overline ab)

Euler’s Formula

eix=cosx+isinxe^{ix} = \cos x + i \sin x

(eix)n=cos(nx)+isin(nx)(e^{ix})^n = \cos (nx) + i \sin(nx)

cosx=eix+eix2,sinx=eixeix2\cos x = \frac{e^{ix} + e^{-ix}}{2}, \sin x = \frac{e^{ix} - e^{-ix}}{2}

Sequence Convergence

  1. ϵN\epsilon-N Definition.
  2. Squeeze Theorem
  3. Monotone Convergence Theorem
  4. Odd/Even Subsequence: if they are convergence to the same number.
  5. Cauchy Criterion (by definition or by proving xn+1xnrxnxn1,0<r<1\mid x_{n+1}-x_n\mid\leq r\mid x_n-x_{n-1}\mid, 0<r<1).

Tricks for sequence

有些名字是自己编的。

  1. To show equality such as a=ba = b, try to show both aba \leq b and aba \geq b hold.

  2. To show a number aa is irrational, usually prove by contradiction, assume a=xya = \frac{x}{y}.

  3. To prove the equivalent (\Leftrightarrow), prove both \Leftarrow and \Rightarrow hold.

1+ϵ1+\epsilon Trick

Example 1

show that limnnn=1\lim_{n\to\infin} \sqrt[n]{n} = 1.

​ Pf. Let nn=1+xn\sqrt[n]{n} = 1 + x_n, for xn>0x_n > 0. we get

n=(1+xn)n(n2)xn2=n(n1)2xn2n = (1+x_n)^n\geq \tbinom{n}{2} x_n^2 = \frac{n(n-1)}{2}x_n^2

​ It implies that. xn22n1,n2x_n^2 \leq \frac{2}{n - 1}, n\geq 2. Thus limnxn=0\lim_{n\to\infin} x_n = 0.

Example 2

show that limnan=0\lim_{n\to\infin} a^n = 0, for 0<a<10 < a < 1.

​ Pf. Let a=11a=1b+1a = \frac{1}{\frac{1}{a}} = \frac{1}{b + 1}, for b>0b > 0. Then an=1(b+1)n<1nba^n = \frac{1}{(b+1)^n} < \frac{1}{nb}

Example 3

show that limnnkan=0\lim_{n\to\infin} \frac{n^k}{a^n} = 0, for a>0,kN+a>0, k\in \N_+.

​ Pf. to show limnn(1+b)nk=0\lim_{n\to\infin} \frac{n}{(1+b)^{\frac{n}{k}}} = 0

0<n(1+b)nk<nnk(nk1)2b200 < \frac{n}{(1+b)^{\frac{n}{k}}} < \frac{n}{\frac{\frac{n}{k}\cdot(\frac{n}{k}-1)}{2}b^2}\to 0

Order rule & squeeze

Example 1

Find the limit limnn25n+(1)nn\lim_{n\to\infin}\sqrt[n]{n^2-5n+(-1)^n}.

Sol. It’s obvious that limnn25n+(1)nn2=1\lim_{n\to\infin} \frac{n^2-5n+(-1)^n}{n^2}=1. By the order rule, 0.5<n25n+(1)nn2<1.50.5 < \frac{n^2-5n+(-1)^n}{n^2} < 1.5. then we get

0.5n(nn)2<n25n+(1)nn<1.5n(nn)2\sqrt[n]{0.5}\cdot(\sqrt[n]{n})^2 < \sqrt[n]{n^2-5n+(-1)^n}<\sqrt[n]{1.5}\cdot(\sqrt[n]{n})^2

Example 2

Suppose {an}\{a_n\} is a sequence of positive number s.t. limnan+1an=L\lim_{n\to\infin} \frac{a_{n+1}}{a_n} = L, where 0L<10\leq L < 1. Prove that limnan=0\lim_{n\to\infin} a_n = 0.

Since L<L+12<1L < \frac{L + 1}{2} < 1, by the order rule, we can get an+1an<L+12\frac{a_{n+1}}{a_n} < \frac{L + 1}{2}, for n>Nn > N. Then we can compute

0<an=anan1an1an2aN+1aNaN<(L+12)nNaN0 < a_n = \frac{a_n}{a_{n-1}}\cdot\frac{a_{n-1}}{a_{n-2}}\cdots\frac{a_{N+1}}{a_N}\cdot a_N < (\frac{L + 1}{2})^{n-N}\cdot a_N

Because limn(L+12)nN=0\lim_{n\to\infin}(\frac{L+1}{2})^{n-N} = 0, so limnan=0\lim_{n\to\infin} a_n = 0

AM-GM Inequality

i=1nxiλii=1nλixi,λ1++λn=1\prod_{i=1}^n x_i^{\lambda_i} \leq \sum_{i=1}^n \lambda_ix_i, \lambda_1+\cdots+\lambda_n=1

To show (1+1n)n(1+1n+1)n+1(1+\frac{1}{n})^n \leq (1+\frac{1}{n+1})^{n+1}.

(1+1n)n=n+1nn+1nn+1nn terms1(1+\frac{1}{n})^n = \underbrace{\frac{n+1}{n}\cdot\frac{n+1}{n}\cdots\frac{n+1}{n}}_{n\ \text{terms}}\cdot 1

(1+1n)nn+1=(n+1n)1n+1(n+1n)1n+1(n+1n)1n+1n terms11n+11n+1n+1n++1n+1n+1nn terms+1n+11=n+2n+1=(1+1n+1)\begin{aligned} (1+\frac{1}{n})^{\frac{n}{n+1}} &= \underbrace{(\frac{n+1}{n})^{\frac{1}{n+1}}\cdot(\frac{n+1}{n})^{\frac{1}{n+1}}\cdots(\frac{n+1}{n})^{\frac{1}{n+1}}}_{n\ \text{terms}}\cdot1^{\frac{1}{n+1}}\\ &\leq \underbrace{\frac{1}{n+1}\cdot\frac{n+1}{n} +\cdots+ \frac{1}{n+1}\cdot\frac{n+1}{n}}_{n\ \text{terms}} + \frac{1}{n+1}\cdot 1\\ &= \frac{n+2}{n+1} = (1+\frac{1}{n+1}) \end{aligned}

Therefore, (1+1n)n(1+1n+1)n+1(1+\frac{1}{n})^n \leq (1+\frac{1}{n+1})^{n+1}

Binomial Formula

The most common usage method has already been stated.

Prove that xn=(1+1n)nx_n = (1+\frac1n)^n is bounded above.

xn=k=0n(nk)1nk=2+k=2nn(n1)(nk+1)k!1nk=2+k=2nn(n1)(nk+1)nk1k!<2+k=2n1k!<2+(11n)<3\begin{aligned} x_n &= \sum_{k = 0}^n\tbinom{n}{k}\frac{1}{n^k}\\ &= 2 + \sum_{k=2}^n\frac{n(n-1)\cdots(n-k+1)}{k!}\cdot\frac1{n^k}\\ &= 2 + \sum_{k=2}^n\frac{n(n-1)\cdots(n-k+1)}{n^k}\cdot\frac1{k!}\\ &< 2 + \sum_{k=2}^n \frac{1}{k!}\\ &< 2 + (1-\frac1n)\\ &< 3 \end{aligned}

Re-grouping

To show k=11k\sum_{k=1}^\infin \frac1k diverges, for any N>0N>0, we can have any nn s.t. 2n>N2^n > N, and we can get,

x2n+1x2n=12n+1+12n+2++12n+1>2n12n+1=12\mid x_{2^{n+1}}-x_{2^n}\mid = \frac1{2^n+1}+\frac1{2^n+2}+\cdots+\frac1{2^{n+1}} > 2^n\cdot\frac1{2^{n+1}} = \frac12

By taking 0<ϵ<120 <\epsilon < \frac12, x2n+1x2n>ϵ\mid x_{2^{n+1}}-x_{2^n}\mid> \epsilon. So it diverges.

Common formula

x3y3=(xy)(x2+xy+y2)x^3-y^3 = (x-y)(x^2+xy+y^2)

sinxx\mid \sin x \mid \leq \mid x\mid

0<1ett, for t00 < 1-e^{-t} \leq t, \ \text{for}\ t\geq 0

三角恒等式

Change Variable

Function Convergence

  1. ϵδ\epsilon-\delta Definition.
  2. Squeeze Theorem.
  3. Arithmetic rules
  4. Composition rule
  5. One sided limit

Prop. 2.18

The limit of the function f(x)f(x) as xx approaches aa is LL if and only if for every sequence {xn}\{x_n\} that converges to aa, the sequence of function values {f(xn)}\{f(x_n)\} converges to L.

The proposition could be used to prove that a function limit DNE by construct two sequence {xn}\{x_n\} and {yn}\{y_n\} that both converges to aa, but the limit of {f(xn)}\{f(x_n)\} and {f(yn)}\{f(y_n)\} are different.

Derivative

(f1)(a)=1f(f1(a))(f^{-1})'(a) = \frac1{f'(f^{-1}(a))}