This note is for my reference only.
Number Set Bounded setTo prove β \beta β is the supremum of E E E , we could show that for any ϵ > 0 \epsilon > 0 ϵ > 0 , β − ϵ \beta - \epsilon β − ϵ is not the upper bound of E E E . that is, find a element of E E E that is greater or equal to β − ϵ \beta - \epsilon β − ϵ .
The extended real number systemR ‾ = R ∪ { − ∞ , ∞ } \overline{\R} = \R \ \cup \{-\infin, \infin\} R = R ∪ { − ∞ , ∞ } .
Complex numberz + w ‾ = z ‾ + w ‾ z ⋅ w ‾ = z ‾ ⋅ w ‾ ∣ z w ∣ = ∣ z ∣ ⋅ ∣ w ∣ ∣ z + w ∣ ≤ ∣ z ∣ + ∣ w ∣ ∣ z ∣ = ∣ z z ‾ ∣ 1 2 ⇒ ( 1 + a b ‾ ) 2 = ( 1 + a b ‾ ) ( 1 + a ‾ b ) \overline{z + w} = \overline{z} + \overline{w}\\ \overline{z\cdot w} = \overline{z} \cdot \overline{w}\\ \mid zw\mid = \mid z\mid \cdot \mid w \mid \\ \mid z + w \mid \leq \mid z\mid + \mid w \mid \\ \mid z \mid = \mid z\overline z\mid^{\frac{1}{2}} \Rightarrow (1+a\overline b)^2 = (1+a\overline b)(1+\overline ab) z + w = z + w z ⋅ w = z ⋅ w ∣ z w ∣ = ∣ z ∣ ⋅ ∣ w ∣ ∣ z + w ∣ ≤ ∣ z ∣ + ∣ w ∣ ∣ z ∣ = ∣ z z ∣ 2 1 ⇒ ( 1 + a b ) 2 = ( 1 + a b ) ( 1 + a b )
e i x = cos x + i sin x e^{ix} = \cos x + i \sin x e i x = cos x + i sin x
( e i x ) n = cos ( n x ) + i sin ( n x ) (e^{ix})^n = \cos (nx) + i \sin(nx) ( e i x ) n = cos ( n x ) + i sin ( n x )
cos x = e i x + e − i x 2 , sin x = e i x − e − i x 2 \cos x = \frac{e^{ix} + e^{-ix}}{2}, \sin x = \frac{e^{ix} - e^{-ix}}{2} cos x = 2 e i x + e − i x , sin x = 2 e i x − e − i x
Sequence Convergenceϵ − N \epsilon-N ϵ − N Definition.Squeeze Theorem Monotone Convergence Theorem Odd/Even Subsequence: if they are convergence to the same number. Cauchy Criterion (by definition or by proving ∣ x n + 1 − x n ∣ ≤ r ∣ x n − x n − 1 ∣ , 0 < r < 1 \mid x_{n+1}-x_n\mid\leq r\mid x_n-x_{n-1}\mid, 0<r<1 ∣ x n + 1 − x n ∣ ≤ r ∣ x n − x n − 1 ∣ , 0 < r < 1 ). Tricks for sequence有些名字是自己编的。
To show equality such as a = b a = b a = b , try to show both a ≤ b a \leq b a ≤ b and a ≥ b a \geq b a ≥ b hold.
To show a number a a a is irrational, usually prove by contradiction, assume a = x y a = \frac{x}{y} a = y x .
To prove the equivalent (⇔ \Leftrightarrow ⇔ ), prove both ⇐ \Leftarrow ⇐ and ⇒ \Rightarrow ⇒ hold.
1 + ϵ 1+\epsilon 1 + ϵ Trick Example 1show that lim n → ∞ n n = 1 \lim_{n\to\infin} \sqrt[n]{n} = 1 lim n → ∞ n n = 1 .
Pf. Let n n = 1 + x n \sqrt[n]{n} = 1 + x_n n n = 1 + x n , for x n > 0 x_n > 0 x n > 0 . we get
n = ( 1 + x n ) n ≥ ( n 2 ) x n 2 = n ( n − 1 ) 2 x n 2 n = (1+x_n)^n\geq \tbinom{n}{2} x_n^2 = \frac{n(n-1)}{2}x_n^2 n = ( 1 + x n ) n ≥ ( 2 n ) x n 2 = 2 n ( n − 1 ) x n 2
It implies that. x n 2 ≤ 2 n − 1 , n ≥ 2 x_n^2 \leq \frac{2}{n - 1}, n\geq 2 x n 2 ≤ n − 1 2 , n ≥ 2 . Thus lim n → ∞ x n = 0 \lim_{n\to\infin} x_n = 0 lim n → ∞ x n = 0 .
Example 2show that lim n → ∞ a n = 0 \lim_{n\to\infin} a^n = 0 lim n → ∞ a n = 0 , for 0 < a < 1 0 < a < 1 0 < a < 1 .
Pf. Let a = 1 1 a = 1 b + 1 a = \frac{1}{\frac{1}{a}} = \frac{1}{b + 1} a = a 1 1 = b + 1 1 , for b > 0 b > 0 b > 0 . Then a n = 1 ( b + 1 ) n < 1 n b a^n = \frac{1}{(b+1)^n} < \frac{1}{nb} a n = ( b + 1 ) n 1 < n b 1
Example 3show that lim n → ∞ n k a n = 0 \lim_{n\to\infin} \frac{n^k}{a^n} = 0 lim n → ∞ a n n k = 0 , for a > 0 , k ∈ N + a>0, k\in \N_+ a > 0 , k ∈ N + .
Pf. to show lim n → ∞ n ( 1 + b ) n k = 0 \lim_{n\to\infin} \frac{n}{(1+b)^{\frac{n}{k}}} = 0 lim n → ∞ ( 1 + b ) k n n = 0
0 < n ( 1 + b ) n k < n n k ⋅ ( n k − 1 ) 2 b 2 → 0 0 < \frac{n}{(1+b)^{\frac{n}{k}}} < \frac{n}{\frac{\frac{n}{k}\cdot(\frac{n}{k}-1)}{2}b^2}\to 0 0 < ( 1 + b ) k n n < 2 k n ⋅ ( k n − 1 ) b 2 n → 0
Order rule & squeeze Example 1Find the limit lim n → ∞ n 2 − 5 n + ( − 1 ) n n \lim_{n\to\infin}\sqrt[n]{n^2-5n+(-1)^n} lim n → ∞ n n 2 − 5 n + ( − 1 ) n .
Sol. It’s obvious that lim n → ∞ n 2 − 5 n + ( − 1 ) n n 2 = 1 \lim_{n\to\infin} \frac{n^2-5n+(-1)^n}{n^2}=1 lim n → ∞ n 2 n 2 − 5 n + ( − 1 ) n = 1 . By the order rule, 0.5 < n 2 − 5 n + ( − 1 ) n n 2 < 1.5 0.5 < \frac{n^2-5n+(-1)^n}{n^2} < 1.5 0 . 5 < n 2 n 2 − 5 n + ( − 1 ) n < 1 . 5 . then we get
0.5 n ⋅ ( n n ) 2 < n 2 − 5 n + ( − 1 ) n n < 1.5 n ⋅ ( n n ) 2 \sqrt[n]{0.5}\cdot(\sqrt[n]{n})^2 < \sqrt[n]{n^2-5n+(-1)^n}<\sqrt[n]{1.5}\cdot(\sqrt[n]{n})^2 n 0 . 5 ⋅ ( n n ) 2 < n n 2 − 5 n + ( − 1 ) n < n 1 . 5 ⋅ ( n n ) 2
Example 2Suppose { a n } \{a_n\} { a n } is a sequence of positive number s.t. lim n → ∞ a n + 1 a n = L \lim_{n\to\infin} \frac{a_{n+1}}{a_n} = L lim n → ∞ a n a n + 1 = L , where 0 ≤ L < 1 0\leq L < 1 0 ≤ L < 1 . Prove that lim n → ∞ a n = 0 \lim_{n\to\infin} a_n = 0 lim n → ∞ a n = 0 .
Since L < L + 1 2 < 1 L < \frac{L + 1}{2} < 1 L < 2 L + 1 < 1 , by the order rule, we can get a n + 1 a n < L + 1 2 \frac{a_{n+1}}{a_n} < \frac{L + 1}{2} a n a n + 1 < 2 L + 1 , for n > N n > N n > N . Then we can compute
0 < a n = a n a n − 1 ⋅ a n − 1 a n − 2 ⋯ a N + 1 a N ⋅ a N < ( L + 1 2 ) n − N ⋅ a N 0 < a_n = \frac{a_n}{a_{n-1}}\cdot\frac{a_{n-1}}{a_{n-2}}\cdots\frac{a_{N+1}}{a_N}\cdot a_N < (\frac{L + 1}{2})^{n-N}\cdot a_N 0 < a n = a n − 1 a n ⋅ a n − 2 a n − 1 ⋯ a N a N + 1 ⋅ a N < ( 2 L + 1 ) n − N ⋅ a N
Because lim n → ∞ ( L + 1 2 ) n − N = 0 \lim_{n\to\infin}(\frac{L+1}{2})^{n-N} = 0 lim n → ∞ ( 2 L + 1 ) n − N = 0 , so lim n → ∞ a n = 0 \lim_{n\to\infin} a_n = 0 lim n → ∞ a n = 0
AM-GM Inequality∏ i = 1 n x i λ i ≤ ∑ i = 1 n λ i x i , λ 1 + ⋯ + λ n = 1 \prod_{i=1}^n x_i^{\lambda_i} \leq \sum_{i=1}^n \lambda_ix_i, \lambda_1+\cdots+\lambda_n=1 i = 1 ∏ n x i λ i ≤ i = 1 ∑ n λ i x i , λ 1 + ⋯ + λ n = 1
To show ( 1 + 1 n ) n ≤ ( 1 + 1 n + 1 ) n + 1 (1+\frac{1}{n})^n \leq (1+\frac{1}{n+1})^{n+1} ( 1 + n 1 ) n ≤ ( 1 + n + 1 1 ) n + 1 .
( 1 + 1 n ) n = n + 1 n ⋅ n + 1 n ⋯ n + 1 n ⏟ n terms ⋅ 1 (1+\frac{1}{n})^n = \underbrace{\frac{n+1}{n}\cdot\frac{n+1}{n}\cdots\frac{n+1}{n}}_{n\ \text{terms}}\cdot 1 ( 1 + n 1 ) n = n terms n n + 1 ⋅ n n + 1 ⋯ n n + 1 ⋅ 1
( 1 + 1 n ) n n + 1 = ( n + 1 n ) 1 n + 1 ⋅ ( n + 1 n ) 1 n + 1 ⋯ ( n + 1 n ) 1 n + 1 ⏟ n terms ⋅ 1 1 n + 1 ≤ 1 n + 1 ⋅ n + 1 n + ⋯ + 1 n + 1 ⋅ n + 1 n ⏟ n terms + 1 n + 1 ⋅ 1 = n + 2 n + 1 = ( 1 + 1 n + 1 ) \begin{aligned} (1+\frac{1}{n})^{\frac{n}{n+1}} &= \underbrace{(\frac{n+1}{n})^{\frac{1}{n+1}}\cdot(\frac{n+1}{n})^{\frac{1}{n+1}}\cdots(\frac{n+1}{n})^{\frac{1}{n+1}}}_{n\ \text{terms}}\cdot1^{\frac{1}{n+1}}\\ &\leq \underbrace{\frac{1}{n+1}\cdot\frac{n+1}{n} +\cdots+ \frac{1}{n+1}\cdot\frac{n+1}{n}}_{n\ \text{terms}} + \frac{1}{n+1}\cdot 1\\ &= \frac{n+2}{n+1} = (1+\frac{1}{n+1}) \end{aligned} ( 1 + n 1 ) n + 1 n = n terms ( n n + 1 ) n + 1 1 ⋅ ( n n + 1 ) n + 1 1 ⋯ ( n n + 1 ) n + 1 1 ⋅ 1 n + 1 1 ≤ n terms n + 1 1 ⋅ n n + 1 + ⋯ + n + 1 1 ⋅ n n + 1 + n + 1 1 ⋅ 1 = n + 1 n + 2 = ( 1 + n + 1 1 )
Therefore, ( 1 + 1 n ) n ≤ ( 1 + 1 n + 1 ) n + 1 (1+\frac{1}{n})^n \leq (1+\frac{1}{n+1})^{n+1} ( 1 + n 1 ) n ≤ ( 1 + n + 1 1 ) n + 1
The most common usage method has already been stated.
Prove that x n = ( 1 + 1 n ) n x_n = (1+\frac1n)^n x n = ( 1 + n 1 ) n is bounded above.
x n = ∑ k = 0 n ( n k ) 1 n k = 2 + ∑ k = 2 n n ( n − 1 ) ⋯ ( n − k + 1 ) k ! ⋅ 1 n k = 2 + ∑ k = 2 n n ( n − 1 ) ⋯ ( n − k + 1 ) n k ⋅ 1 k ! < 2 + ∑ k = 2 n 1 k ! < 2 + ( 1 − 1 n ) < 3 \begin{aligned} x_n &= \sum_{k = 0}^n\tbinom{n}{k}\frac{1}{n^k}\\ &= 2 + \sum_{k=2}^n\frac{n(n-1)\cdots(n-k+1)}{k!}\cdot\frac1{n^k}\\ &= 2 + \sum_{k=2}^n\frac{n(n-1)\cdots(n-k+1)}{n^k}\cdot\frac1{k!}\\ &< 2 + \sum_{k=2}^n \frac{1}{k!}\\ &< 2 + (1-\frac1n)\\ &< 3 \end{aligned} x n = k = 0 ∑ n ( k n ) n k 1 = 2 + k = 2 ∑ n k ! n ( n − 1 ) ⋯ ( n − k + 1 ) ⋅ n k 1 = 2 + k = 2 ∑ n n k n ( n − 1 ) ⋯ ( n − k + 1 ) ⋅ k ! 1 < 2 + k = 2 ∑ n k ! 1 < 2 + ( 1 − n 1 ) < 3
Re-groupingTo show ∑ k = 1 ∞ 1 k \sum_{k=1}^\infin \frac1k ∑ k = 1 ∞ k 1 diverges, for any N > 0 N>0 N > 0 , we can have any n n n s.t. 2 n > N 2^n > N 2 n > N , and we can get,
∣ x 2 n + 1 − x 2 n ∣ = 1 2 n + 1 + 1 2 n + 2 + ⋯ + 1 2 n + 1 > 2 n ⋅ 1 2 n + 1 = 1 2 \mid x_{2^{n+1}}-x_{2^n}\mid = \frac1{2^n+1}+\frac1{2^n+2}+\cdots+\frac1{2^{n+1}} > 2^n\cdot\frac1{2^{n+1}} = \frac12 ∣ x 2 n + 1 − x 2 n ∣ = 2 n + 1 1 + 2 n + 2 1 + ⋯ + 2 n + 1 1 > 2 n ⋅ 2 n + 1 1 = 2 1
By taking 0 < ϵ < 1 2 0 <\epsilon < \frac12 0 < ϵ < 2 1 , ∣ x 2 n + 1 − x 2 n ∣ > ϵ \mid x_{2^{n+1}}-x_{2^n}\mid> \epsilon ∣ x 2 n + 1 − x 2 n ∣ > ϵ . So it diverges.
x 3 − y 3 = ( x − y ) ( x 2 + x y + y 2 ) x^3-y^3 = (x-y)(x^2+xy+y^2) x 3 − y 3 = ( x − y ) ( x 2 + x y + y 2 )
∣ sin x ∣ ≤ ∣ x ∣ \mid \sin x \mid \leq \mid x\mid ∣ sin x ∣ ≤ ∣ x ∣
0 < 1 − e − t ≤ t , for t ≥ 0 0 < 1-e^{-t} \leq t, \ \text{for}\ t\geq 0 0 < 1 − e − t ≤ t , for t ≥ 0
三角恒等式
Change Variable Function Convergenceϵ − δ \epsilon-\delta ϵ − δ Definition.Squeeze Theorem. Arithmetic rules Composition rule One sided limit Prop. 2.18The limit of the function f ( x ) f(x) f ( x ) as x x x approaches a a a is L L L if and only if for every sequence { x n } \{x_n\} { x n } that converges to a a a , the sequence of function values { f ( x n ) } \{f(x_n)\} { f ( x n ) } converges to L.
The proposition could be used to prove that a function limit DNE by construct two sequence { x n } \{x_n\} { x n } and { y n } \{y_n\} { y n } that both converges to a a a , but the limit of { f ( x n ) } \{f(x_n)\} { f ( x n ) } and { f ( y n ) } \{f(y_n)\} { f ( y n ) } are different.
Derivative( f − 1 ) ′ ( a ) = 1 f ′ ( f − 1 ( a ) ) (f^{-1})'(a) = \frac1{f'(f^{-1}(a))} ( f − 1 ) ′ ( a ) = f ′ ( f − 1 ( a ) ) 1